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ABSTRACT 

For 2 a strong limit singular cardinal, and more generally for 2 > 2 c°f~, we 
prove the equivalence of a number of model theoretic and combinatorial 
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§1. Id le  cha t te r  

1.1. History 

For  Z, 2,/~ card ina ls ,  we wri te  

( 2 ' 2 + )  - 3 "  ( ~ ' ~ + )  

to m e a n :  for every  first o rde r  theory  T o f  c a r d i n a l i t y  less t h a n  Z wi th  a 
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distinguished monadic predicate P, if every finite subset of T has a model of 
type (2, 2 +) (that is, a model M of cardinality 2 + in which pM has cardinality 
2), then T has a model of  type (/t,/1 ÷ ). We will be interested here mainly in the 
case Z = R0, i.e., Tmay  be taken to be a single sentence; in this case we omit the 
reference to Z. 

The subject began with the theorem of Vaught ( ( / t , / t+)  ~ (R0, N1)). 
Subsequently Chang proved (.', No, R ~) ~ ( / t , / t  + ) if/ t  = / t  <u). Jensen proved 

((R0, N~) ~ (/t,/t + ) for/t strong limit singular) from V = L, more precisely Du; 

the published proof is due to Silver. In the negative direction, Silver and Mitchell 
proved Con((Ro, R1)~(R~, N2)), Schmerl showed (both using mild large cardi- 
nals) Con( V n [ ( R n, R, + 1 )-~ ( N,1 + 1, Nn + 2) ]), and Litman and Shelah showed 

Con(GCH + [(R0, Nt)-~(N,o, No~+~)]) 

(starting with supercompact cardinals). One of our goals here is to give precise 
set-theoretic equivalents to two-cardinal transfer principles, for strong limit 
singular cardinals. 

Another goal is to settle the relationship of two-cardinal transfer principles 
to omitting types theorems for ~_qO(Q). Fuhrken showed the equivalence of  the 
principle (R0, N1) -~o ( / t ' / t + )  with a completeness theorem for ~ ( Q )  in the 

/t +-interpretation (Qx being read as "for at least/ t  + x's"): "If T _ ~ ( Q )  is 
consistent in the Nl-interpretation, and I T I < / t ,  then T has a model for the 
#+-interpretation." Shelah [Shl] showed that (No, N1) ~ ( / t , / t+)  implies 

that ~¢(Q) is/ t-compact in the/ t  +-interpretation, via a characterization of the 
transfer principle in terms of partition relations.* 

Keisler proved a strong omitting types theorem for ~ (Q) .  One useful feature 
of  his proof  is that the final model is built as the union of  a ta~-chain of 
countable structures, which allows certain decisions about omission or realiza- 
tion of types to be made along the way; this flexibility is useful, e.g., Magidor 
and Malitz used it in the compactness of ~e(Q n . - . )n  <~,- This strengthening 
will be called the strong omitting types theorem. Keisler's result extends both 
Vaught's theorem and the Henkin omitting types theorem, and it is natural to 
look for common extensions to (/t-compact) models for the/ t  +-interpretation 
for arbitrary cardinality/t .  

* By [Sh3] even (Ro, Rl)---,(~t,~t +) implies this (as VIII of 2.2 can be axiomatized 
by ~EL(Q)). 
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Shelah [Sh4] derived a strong omitting types theorem for d ( Q )  in the 2 +- 

interpretation (i.e., with a "linear" proof, as in Keisler's case) from a diamond- 

like principle (D1)x; one has the implications O~=*(D1)x~2 = 2 <~, and in 

addition (by theorems of Gregory and Shelah, see [Sh4]) under GCH every 

regular 2 > NI satisfies (D1)~ (and even ~x for 2 a successor). 

Grossberg [Gr] proved an omitting types theorem for L~°(Q) in the 2 +- 

interpretation for 2 singular, assuming I-q 4 and { Z < 2 : (D1) x } is unbounded in 

2, using the arguments of  Jensen or Silver (in (No, 1~) ~ (1~<o, N<o+ ~)) and the 
arguments of  [Sh4]. 

The question as to whether one can have a version strong enough for the 

construction of nearly rigid models, or transfer theorems for Magidor-Malitz 

quantifiers, [as the regular case was used] remains open. 

On the relationship between the various relatives of  the squares for succes- 

sor of singular cardinals, see Ben David and Shelah [BSh]. 

1.2. Notation 
For a logic Lt' and a vocabulary r, Lt'[z] is the set of LP-formulas in this 

vocabulary. The logic L,°(Q) is the extension of first order logic by an additional 

quantifier Q, and in the 2-interpretation "Qx'" signifies: "there are at least 2 x 

such that". For an L,°(Q)-theory T, consistency means finite consistency in the 

Rl-interpretation, or equivalently: relative to Keisler's axioms. 

Infinitary formulas F of the following form are taken to represent certain sets 

of  LP(Q)-formulas, called their "finitary approximations": 

(F) (QiJ~i)i<c~ ¢~ ~tj 
j < #  

where for i < o~, Qi is 3 or Q, and Yi is a sequence of  variables, and fo r j  </7 % 

is an L~°(Q)-formula. A finitary approximation 7 to such a formula F is a 
formula of the form: 

(~) (Qi~o).P~(o)Qm)y~l)" " Qi~k)Yi*(k)) 8L % 
j ew  

where i(0) < i(1) < • • • < i(k) < a, y~) c_ 3Ji~l~ is a finite string of variables 
containing all free variables of any % (j E w) lying in y~(~), and w c_ fl is also 

finite. Here the quantifier Qy is to be interpreted (for y finite) in the 

2 +-interpretation as: "there are 2 + pairwise disjoint sequences y~ (a < / l  +) such 

t h a t . . . " .  So (F) represents the set of  all of these finitary approximations (7), 
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and if F is already finitary then it is equivalent to its set of finitary approxima- 
tions as defined here. 

In connection with the omitting types property we will need the notion of 2- 
support from [Sh4], which is a natural extension of Keisler's notion. If T is an 
Ze(Q)-theory, p(x) a type, and F an infinitary formula of the form 

(F) (Qi)~i),<~ 3 ;f & ~ ( x ,  j~) 
j < J  

with all Qi of the form 3 or Q, we call F a 2-support for p if ~ < 2, F is 
consistent with T and for all q~ ~ p the following is inconsistent with T: 

(F(cp)) (Qi~9,)~<~ i]x(j<& ~(~ ,  j~)& 7~o(x)). 

REMARK. We can use only Qiyi - -  see end of 3.1. 

§2. A theorem or two 

As far as the two-cardinal transfer principle (R0, R t ) ~ (2, 2 + ) is concerned, 
if we assume GCH then only singular cardinals are problematic. Our main 
result clarifies this case: 

2.1. THEOREM. For 2 a singular strong limit cardinal, and more generally 
if2 > 2 c°r~, the following are equivalent: 

(1) (1~0, b~t) ~ (2, 2+). 
(2) The Completeness Theorem for Se(Q) in the 2 +-interpretation. 
(3) The omitting types theorem for ~(Q)  in the ,~ +-interpretation. 
(4) Various weak forms ofOa. 

A considerable amount remains to be filled in to make this precise. We will 

formulate eight properties of a cardinal 2, three model theoretic and the rest 

set-theoretic. A more precise version of 2.1 states that for singular strong limit 
cardinals they are all equivalent, and more generally that if2 > 2 c°f~ then six of 

them are equivalent (we lose two versions of square to the vagaries of cardinal 

arithmetic). 

2.2. Eight properties of 2 
I. Two-cardinal transfer: 

II. ~(Q)-completeness: 
(Ro, R t ) ~ ( 2 , 2 + ) .  
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I f  T is a consistent ~ ' (Q)- theory  ofcardinal i ty  at most  it, then Thas  a model  

in the 2 +-interpretation. 

III. Omitt ing types: 

I f  T is a consistent ~ ( Q ) - t h e o r y  of  cardinality at most  it and p~ (i < it) are 

types with no 2-support,  then T has a model  in the it +-interpretation 

omitt ing each p~. 

The types p, are assumed to involve finitely many free variables, or equiva- 
lently just  one free variable. For types in lc variables our results will hold if). 

satisfies additionally: cofit  > x, and I a~ I < 2 for a < it. 

The next four properties are weak variants o f  Jensen's square (cf. 2.4). A 

sequence (C~ : a < it +, a a limit) of  sets Co C_C_ a < it + is a [] sequence on it + (or: 

"for i t ' )  if: 

(1) Co is closed unbounded  in a for a < it + a limit; 

(2) I C~I < it if cof(a)  < it (always, if it is singular); 

(3) if  a, 13 < it + are limits with fl ~ C" (a limit of  elements of  C,) then 

G = k '  n c~. 
Jensen's  principle ~ asserts that there is a [] sequence on it +. 

Terminology 
We will consider sequences (Ca : a < 2 +) with C~ _ a for a < it + 

Such a sequence is coherent if Cp = f l  A C, whenever  fl ~ C~. A family 

C' = ( C  J" a < it +, ( < cof  it ) will be called a it +-decomposition if: 
(1) for ~ < cof  it the sequence (C~ "a < it +) is coherent; 

(2) for a < it +, a = U ~ C,¢ (an increasing union in ().  

We associate with any it +-decomposit ion C the structures cg 
(a < it +, ( < cof  it) with underlying set {a} U C ~ and relations < and R ~ ( for 

< () ,  where R¢(i,j) signifies: i ~ Q¢. 

IV. r-it: 

There is a 2 +-decomposit ion C' such that for any ( < cof2 :  there are fewer 

than 2 associated structures of  the form ~ ~ (a < 2 +), up to isomorphism.* 

* Note that this implies I C~l <2 ,  as ( ~ : f l ~ C ~ )  are pairwise non-isomorphic having 
different order type. 
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v. 
There is a )t +-decomposit ion C such that for any ~ < cof)t  there are at most  Z 

associated structures of  the tbrm ~ ~ (a < )t +), up to isomorphism. 

We will need a weak form of  the last two principles. Observe that in IV and V 

)t is involved as a cardinality, but  )t + enters primarily as an ordered set. I f L  is a 

)t +-like ordering (i.e. I L [ = )t 4, each proper initial segment is o f  smaller car- 

dinality) then we may speak of  L-decomposi t ions  ( C [ ' ~  < cof2 ,  a E L )  and 

associated structures ~ c, and then formulate the following variants of  IV, V. 

VI. U~*: 

There is a 2 +-like ordering L,  an L-decompos i t ion  C, and a sequence of  

refining equivalence relatiens E c ( ( < c o f ) t )  on L ,  such that for any 

( < c o f 2  and a, b E L :  
(1) E ;(a,  b) implies that there is an i somorphism h" ~ --~ ( ~  such that for 

a' E ~ ,  E C(a', h(a')) holds. 
(2) a E ~q~ implies -1E C(a, b). 

(3) E ~ has fewer than )t equivalence classes. 

VII. I] ~*: 

There is a ~. ÷ -ordering L,  an L-decompos i t ion  C', and a sequence of  refining 

equivalence relations E ¢ on L ,  such that for any ~ < c o f ) t  and a, b E L  
condit ions (1-2) of  D~* hold, and: 

(Y) E c has at most  )t equiva:lence classes. 

The last property that we consider  is quoted  from [Shl] (for the general 
form) and more specifically from [Sh3]. 

VIII. A non-part i t ion property: 
There is a )t-coloring c:  (2+)2----2 such that for any finite w ___ )t+ there are 

finite sets Wo, w~, w2 such that for a~Ewj (i = 0, 1, 2) we have a o < C ~ < a 2 ,  
onto 

and there are color- and order-preserving functions f :  w , w 0 U W l U W 2 

and g" w0 U w~ ~ w0 U w2 (e.g. c(a, r )  = c(f(a),  f(fl)) on w 2) so that: 

f [w]  meets both w~ and w2; 

c[w~ X w2] is disjoint from c[(w 0 U w,) 2] for i = 1, 2; and 

c t (w~ X w2) is one-to-one. 

2.3. MAIN THEOREM. I f  )t lS a singular strong limit cardinal then these eight 
properties are equivalent. I f  )t :> 2 ~°f~, properties I-IV, VI, VIII are equivalent. 

More precisely, for any )t: 
(1) I, II, VII, VIII are equivalent, 
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(2) III=*II, I V ~ V I ,  V I ~ V I I ,  V ~ V I I ,  and I V ~ V ,  
(3) I I ~ V I  i f2  c°f~ < 2 ,  

(4) V I ~  III, 
(5) VI=~IV if2 is a strong limit cardinal. 

PROOF. The proof is arranged as follows. 
(1) That I, II are equivalent is due to Fuhrken. 

That I, VIII are equivalent is found in [Sh3]. 
I ~  VII: §5.1. 
VII ~ II: §4. 

(2) These are all clear. 
(3) §5.2. 
(4) §4. 
(5) §2.5. 

2.4. Other relationships 
The following results are not needed for the proof  of the main theorem, but 

serve to clarify various relationships among combinatorial notions. 
(1) If  2 <~ = 2  then D b holds, and if 2 is strongly inaccessible then r-lff 

holds (2.7). 
(2) D~ implies rl~ for 2 a singular strong limit (2.8). 
(3) D~ yields a 2-Kurepa tree (2.6). (So if e.g. GCH holds and 2 is regular, 

then the condition D~ can fail.) 

2.5. REMARK. Assume D~. Then for a < 2  +, ( < c o f 2 ,  and fl, TE 
{a} U C~ distinct, CJ is not isomorphic with C~, since if e.g. fl < 7 then 
ot (CJ) < ot(C~). Hence if there are x isomorphism types of structures among 
{C J" a < 2 +}, then ot (C,  ¢) < x + for each such structure (even uniformly in 
a). In other words, if C witnesses D~ then for each ( < cof2 we will have: 

(*) s u p ( o t ( C J ) : a < 2  +) < 2  

if 2 is a limit cardinal. Conversely if 2 is a strong limit cardinal and C is a 
2 +-decomposition, then the latter condition suffices for I-1~. 

In particular, when 2 is a strong limit cardinal we can derive D~ from D~* by 
restricting an L-decomposit ion C to a cofinal 2 +-sequence in L, since (*) also 
follows from [] ~'. 

2.6. FACT. D~ yields a 2-Kurepa tree, that is a tree with cof(2) levels, each 
of size less than 2, and at least 2 + branches. 



140 s .  S H E L A H  Isr .  J. M a t h .  

• r < cof2 ) be a 2 +-decomposition afforded by PROOF• Let (C~ a < 2 + , ,  
[] ~. For any associated structure <g ~ let MJ  be the canonical collapse of CJ to a 

structure whose underlying set is an ordinal. The M~ for a < 2 + will be at level 
in the tree; by D~, for each ~ < cof(2), there are fewer than it such collapsed 

structures. Put m~ above Mg (for ~ < () if ot(Mg)_-_ o t (MJ)  and the 

canonical injection is an isomorphism for the language of Mg.  Each ordinal 
a < it + (i.e., the identity) determines a branch (M J" ( < cof2) ,  and these 
branches are distinct, since for fl < a and ( large we will have fl E C ~¢ and hence 

{fl } U C B c Ca, forcing ot (M; i )>  ot (M~). 

2.6a. NOTE. D~* would suffice. 

2.7. PROPOSITION. [f it<a == it then D b holds, while i f  it is strongly inacces- 
sible then D ~ also holds. 

PROOF. We defer the case it = R0 to stage A of the proof of 5.1 as some 

details are different, and we actually require [] ~0 in the proof of the main result. 
So assume it is uncountable. It will suffice to construct a it +-decomposition 

(C~" ~' <it ,  a< i t  +) 

so that leVI___< I~1. We proceed by induction on a, and our inductive 
hypothesis includes the condition: fl = U¢ <a CJ for fl < a, which we therefore 
check as we proceed. There are four cases. 

If a = 0  set C J =  ~ .  
If a = ~ + k with ~ a limill ordinal and k > 0 an integer, we set CJ = 

c J  u - 

If a = ~ is a limit ordinal of cofinality x we set ~ = lim~<k ~(i) (increasing) 
and deal with two cases. Suppose first that x < it. Then for some ~ with 
x =< ~ < it we have: 

~( i )~  ~ (, 6~i) for all i < j  < x. 

Let CJ = ~ for ~ < ~, and C,~ = U~<~ C6~) for ~ > ~. 

Finally we suppose that k --= 2 and we retain the notation of  the previous 

case. For ~, ~ < 2 call ~ ~-adequate if: 

~(j)E!C~(i) f o r j < i  < ~ .  

Define f:it----it by f ( f f ) = s u p { ~ ' ~  < ~ and ~ is ~-adequate). Then f is 
monotonically nondecreasing and ff is f (  ~)-adequate for all ~ < it. For any 
i < i t  there is ~ < 2  with ff > i and ~ /- adequate, hence f (~ )  > i. Now define 
CJ = U~<~¢)Co]~). The coherence and cardinality constraints are reslbected, 
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and these sets increase as functions of  ( .  As rg ( f )  is unbounded,  a = U¢ C~ 

by induction. • 

2.8. PROPOSITION. [-'],t implies n~ for it a singular strong limit. 

PROOF. Let ( C , : a < i t  +, a a limit) be a [] sequence for 2 +. Let 2 = 

lim,<cof~2(i) with (2(i))i<cof~ an increasing sequence of  cardinals. We will 

construct a it ÷-decomposition C satisfying: 

(1) lEVI---<it((), 
(2) for o~ a limit, ,8 E C',, and ( < cofit  with it(~) >= I C,I ,  we have fl n C ,  ¢ = 

C~. 
We proceed by induction on a. 

C0 ¢ = J~ for ( < cof2 .  

I f a  = ~ + k with 0 < k < co, ~ a limit, let C j  = CJ  U (a - 3). 

Suppose that a is a limit. Then C, exists. There are two cases. First, i f a  E C"~ 

(equivalently, a = sup (C'~)) let CJ  be: 

i f 2 ( ( )  < ICol; 

U{c~:f lEC'a,b<a)  i f 2 ( ( )  > IC~l. 

The coherence condition follows in the last case, since for ,8 < y  < a  

with ,8,?EC'~ we have: flEC~ and IC~l < 2 ( ( ) ,  so by (2) inductively 

,s nc =cJ. 
Finally, we may suppose that a is a limit and a > sup C'~ = ft. So Ca - fl has 

order type 09, say C~-fl = (7(0), y(1) . . . .  ) in increasing order. Call ( n- 

adequate if~(i)  E C~(j) for i < j  < n. Let CJ = U {C~u ) • ~ is / -adequate) .  Note 

that  for all ( C~ = Cy~0) _c C~, so i f ~  U C~' and 2 ( ( )  _-_ I C~I, then as ~ < f l w e  

find: fi n C~ = ~ n C~ = C~ by induction. • 

2.9. NOTE TO 2.8. I f  W C__ V are models of  set theory, it and 2 +* are 

cardinals in W, and in W lq~ holds, then in V D~ also holds, so normally it is 

enough that 2 be a singular cardinal. 

2.10. REMARK. We could replace condit ion II by the following without  

modifying any of  the arguments given: 

II'. Any consistent o~(Q) sentence has a model in the 2 +-interpretation. 

As in 5.1, 5.2 we actually use II' and not I as an assumption. This then yields 

another proof  that II and II' are equivalent. 
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§3. Arboriculture 

3.1. Introduction 
In the balance of  this paper we will deal with the main issue: how to carry out 

a Henkin construction for ~ ( Q )  over a tree of  approximations to a model o f  

size 2 *, given a suitable D-like principle as a point of  departure. Here we focus 

on the necessary syntactical preliminaries concerning trees of  types. It will be 

convenient to invoke Keisler's completeness theorem for ~ ( Q )  in the 

Rl-interpretation. Thus it suffices to check the correctness of  certain arguments 

in this interpretation, rather than providing an explicit formal derivation of  

the necessary principles in an axiomatic framework. 

As a matter  of  notation we introduce additional quantifiers QnXl...xn, 
where Q,x~o means: there are at least 2 + disjoint sequences x~ . . . . .  xn satisfy- 

ing q~. These quantifiers may be defined inductively in ~ ( Q )  as follows: 

(QyQ,.~o) v (Q,.~ 3 y[~o &n Qx'~o(.uy)]). 

Again, the basic properties of  these quantifiers can be ascertained by inspecting 

the R rinterpretat ion.  

3.2. Trees of types 
Let J be a tree, that is a partial order with unique min imum 0, such that for 

t E T, (s ~ T : s < t ) is linearly ordered. A J - t r e e  of  types is an assignment 2,, 

pt of  variables 2t (possibly infinitely many) and partial types Pt to the nodes t of  

J ,  so that: 

(1) the sequences zt (t E J I  are pairwise disjoint, and each is part i t ioned 

into two strings 2t = 2, ; Yt, 
(2) p, is a consistent type in the variables Zt = U {2, : s ~ t}, 

(3) for s < t, Ps = Pt ~ Z, (more accurately: & c_ Pt and p, ~- p, F Z,), 

(4) for s < t all finite approximations to (. • • Q:% 3 y~. • • )s < u ~ Apt belong 

tO Ps, 

(5) -% = ; 3 .  

In (4) the variables X~, 3~ occult in the order of  increasing u, and Qx, is to stand 

for Q,,.% in any finite approximation for which x~' _ .~, has length n. The 

variables Xu, 3~ for u < s occur freely in (4). In terms of  the idea as sketched 

above, the variables xt, .vt are witnesses for Q and 3 respectively. 

If  T is an ~ ( Q ) - t h e o r y  then p will be called a (T, J ) - t r e e  of  types if, in 

addition, each Pt is consistent with T. We will say that p is deductively closed 
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(that is, within its own vocabulary) i f  each p, is (relative to the full vocabulary 

o f  p). Given two ~--trees ~0, 4 we will say that p _ 4 if  p, ___ q, for all t ~ ~". I P [ 

denotes the max imum of  I ~-- I, sup( I Pt [ : t ~ ~ } ,  and No. In our application we 

ignore the case 2 = No, which in any case was handled by Keisler, since it 

would require minor  terminological modifications. 

3.3. REMARK. I f p  is a tree of  types and q is its deductive closure (i.e. each 

qs is the deductive closure Ofps; namely, we put ~o in q, i f  p, L- ~0 and the set of  

free variables of~0 is ___ ~,; we shall usually ignore such points) then ~/is again a 

tree of  types. 

3.4. EXTENSION LEMMA. Let  p be a q--tree o f  types and let t E ~-. Suppose 

p* D_ Pt is a consistent type and p* contains all f inite approximations to: 

(,) ( . . . Q x ,  3 y , . . . ) s < u < = , ^ p *  

for  s < t. 

Then there is a ~--tree ~i o f  types with p c_ q, p* c_ q,, and I q I = I P [ + I P* I . 

PROOF. We may take p and p* to be deductively closed. For t '  E J "  define 

Pt*= p * t U  (Z~: s < t, t'}, and let qt, be the union of  the sets of  finite 

approximations to: 

(?) ( . . . Q x , ,  3 y , . .  ") ,<u-~, ,^p*&^p, ,  

for s _-< t', s ~ - - + .  

For t "_-  < t '  in J certainly q t - -  qr. We claim also that qr F-qr ~Zt, .  Fix 
s =< t"  and consider a finite approximation q~ to (I) with matrix (0 = (ol & ~02, 

where ~ol E ^ p* and ~o2 ~ ^ &,. Let 

s '  = :  max(s, sup(so < t : ¢~ has variables in Zso}). 

Let ~o' = (. • .Q2¢, 3 y , .  • "),,<u~r ~o. Then ¢#'~ ~oj & ~o~ with ¢~ = 

(" • • QXu 3 y , .  • • ),,<~ .~,, ~0z and (essentially) q~ is (. • • Q:¢, 3 32~. • • ), <u =<s, ~0'. 

I f s '  _-< t then ~o~ p,, _c p*, so ~ and hence • are in p*. Thus ~ p *  ~ Zs _c 

qt,. I f s ' g t  then s '  = s and • = ~ol & ~o~ with ~ol~p*C_ qr', ~o;Eps, C_ qt". 

This proves (3) of  the definition of  a tree of  types. To verify (2), consistency, 

in view of  (3) it suffices to check the consistency of  qt, which is p*. Also (3) 

allows us to reduce (4) to: 

(4) For t ' ~ ' - ,  if  ~o @ ^ qt then qt ~ Q2~t 3 yt ft 

which holds in our case. • 
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3.5. LEMMA. Let T be an ~'(Q)-theory, p a partial~-q'(Q)-type in the variables 
x,, y, (i E L ,  a linear order), and assume that all finite approximations to: 

(.) [ . . .Qx,  3y, . . . ] ,eL AP 

are consistent with T. Let q be the type consisting of  the union o f  all the sets oJ 

finite approximations to: 

[ . . .  Qx, 3 y , . . .  ^ p 

as s varies over L.  Then: 
1. p c_ q, q is consistent with T, and any finite approximation to (t)q ( putting 

q for p) is a consequence ofq.  
2. For any formula ~o there is a choice o f  ~ =~o or ~¢ so that all finite 

approximations to: 

(*2) [...Qx~ 3j~,.- "]iLL ̂ (P  U {¢}) 

are consistent with T. 

3. Let OEL be minimal, ~,(x, 2) an ~(Q)-formula, u, 5 variables with a 

disjoint from 2,, 2,for i ~ L - (0}, and 5 disjoint from all x,, y,, and a, and set 

Y; = Y, for i > O, 2~ = Yo U 5. ]"hen" 

(*3) [ . . .Qx,  3 2 ; . .  "].:~L A(p U { 3X?(X,  ft)---,~o(z, u))) 

is consistent with T. 
4. I f  ?(x, y), u, 2 are as above, a disjoint to 2o and x; = .~, for i > O, 

.¢~ = x U ~, then: 

(*4) [. . .Q.c; 32, '-"],eL ^ (P  U (Qx?(x,Q)--~o(~,Q)})  

is consistent with T. 

PROOF. This follows by inspecting the Rrinterpretation. • 

3.6. COROLLARY (tO 3.4, 3.5). I f  p is a ~--tree o f  types then we can find a 

~--tree q o f  types in the same language with p c_ q, I q I = I P I, each qt complete 
(for the variables in Zt) and such that: 

(a) each qt has existential witnesses: 

i f  ~o(a, 5) is an ~(Q)-formula with 5 E Z t ,  then for some 2 E U ,  z,2, 
( 3 a cp(a, 5 ) ~  ~o(2, 2)) belongs to qt; 

(b) each qt has Q-witnesses: 

i f  ?(a, ¢) is an ~(Q)-formula with 5 c_ Z~, s < s' < t, then for some 
x c G,, [Qu ~o(a, 5)-- ,¢(x,  5)] belongs to qt; 
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(c) for any s < t  with s > O, ~q'(Q)-formula ~o(2, z), and Z~Z~ ,  z C_ zt, i f  
~o(2, z) & T Q z  ~o(~, z) is in pi, then for some z ' ~  Ys, (z = z ' ) E  pt. 

PROOF. An iterative procedure based on Lemma 3.5 yields everything but 

condition (c). 

To achieve (c) requires a further iteration based on Lemma 3.4. For this it is 

necessary to verify that under the hypothesis of (c) the type consisting of  all 

finite approximations to expressions: 

(*) [...Qxn 3yn.. "l,,<u=<t[^ pl&(z =z')] 

( s ' <  t) is consistent, where z' is a new variable adjoined to Ys (taken as 

bounded in (*) i f s '  < s ) .  

For ~0~ Apt, [ . . - Q x ,  3yn..-]s,<uzt~0 is witnessed in a model M in the 
Rl-interpretation by a certain tree of  sequences in M, which must be thinned 

(if s '  < s) so as to allow a corresponding choice of  z' = z along each branch. 

As there are at most No choices at the appropriate points, it is easy to thin 

this tree suitably. • 

3.7. REMARK. If the tree J is well-founded then (c) allows us to obtain a 

more extreme condition, assuming that for t E ~ \  (0}, 0 < h(t) < t, h(t) an 

immediate successor of 0: 

(c') for t E,Y- and y E.Pl, there is z E ((-Js <=, ~ )  u 2h~t) such that ( y = z ) ~  Pt. 

For this it suffices to check that if there are s < t, ~0 satisfying the hypothesis of  
(c), then (z ~ x) may be added to Pt with x a new variable adjoined to xt- As we 
do not apply this stronger condition, we say no more about it. 

§4. In memoriam Joyce Kilmer 

4.1. Introduction 

In what may be called the linear approach to building models of an ~O(Q)_ 

theory Tin the 2 +-interpretation, we let M b e  [,.J {M e : ~ < 2 + } with M e a weak 

model of cardinality 2, taking care that in M e +, some large sets get larger, and 

small sets stay small and do not even get new members. ~f2 cooperates, Mwil l  

be a real model. 

Our approach here is somewhat different. Our M e is an incomplete type, or 

partial model, containing a large number of  complete types which form a tree 

~" under inclusion, in such a way that incompatible extensions in ~'-~ of  a 

particular type p are allowed no further common variables. In this framework 
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the index ~ runs only over cof4.  The underlying set of the final model Mwill  be 

2 +. For a < 2 + the restriction of  M to a is itself the limit of approximations 

M~.  A node p in ~--c describe,; M~ up to isomorphism, but a single node will 

correspond to as many as 2 + distinct values of  a (hence the variables in p will 

be systematically replaced by new variables for each suitable a). In a word, #- 

carries a number of templates describing various moderately large pieces of  M. 

4.2. Notation 

Our goal in the present section is to show that V1~* yields the completeness 

theorem for ~ ( Q )  in the 2 ÷-interpretation, and that []~* yields the correspond- 
ing omitting types theorem. To a large extent the two arguments may be given 

simultaneously. 

We fix a 2+-like ordering L, and an L-decomposition C = ( C ~ a : a E L ,  

< cof 2 ) as afforded by [] ~" or [] ~*, as the case may be. We have an associated 

system E ¢ of equivalence relations on L satisfying certain conditions. 

In either case we then define trees ~- ¢ for ~ < cof4 as follows. The nodes of  

~-- c are the classes a/E  ~ (a ~ L). Thus [ ~- c ] < 2, and if we are dealing with [] ~" 

then ]~- ¢ I < 4. The ordering on 3- ~ is defined as follows: a /E  c < b /E ~ if for 
some a ' E a / E  ¢, b ' ~ b / E  ¢, we have a ' ~  Cg,. Observe that by []~'(1) there is 

then a* ~ Cg with E C(a, a*). Hence this relation is asymmetric (remembering 
(2) of []~*) and transitive, andL the predecessors of  b/E c are simply the classes 
a l e  ~ for a E Cb ¢. Observe that if a < a '  and a, a ' ~  Cb ¢ then a/E  ¢ < a ' /E c in 

j - c ,  so ~--c really is a tree. 

4.3. Construction 

We now carry out a Henkin-style proof of  the completeness theorem for 
~O(Q) (assuming b, • ~* []z ), or the omitting types theorem for ~ ( Q )  (assuming []a ), 

in the 4 +-interpretation, using ~-" C-trees of types for ~ < cof4.  

Let T be a consistent £e(Q)-theory in a language ~ of cardinality 4, and 

let p~ ( i < 4 )  be ~q(Q)-types in the same language. L e t  z=Uc<cof~r  c 

(an increasing union) with 1z¢1<2 .  (When working with []b. we can 

allow r c = z for all ( ,  instead.) We will construct (T, ~-- ¢)-trees of types p c 

in the languages t c (extended by a suitable supply of free variables Zc),  

together with embeddings trot'; • zt ¢ ---- z~ for ~ < ~ whenever t = t ' /E ~ (which 

means that t' has the form aLE c for some a and t = a/E  ¢) so that for a E L ,  if 

t ( ~ ) = a / E  ~ then the family. (~t~¢)', t~ct~¢).t~o~ forms a directed system. We 

proceed inductively for ( < cof4.  Let 4 c = max(I z ¢ l, I~" ¢ I). The conditions 

are as follows: 

(0) ~c___t¢___ ~, ItCl =2c;  
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(1) II : z  II 
(2) each pt ¢ is complete for z ~[Z/]; 

(3) each p~ has the properties described in Corollary 3.6(a,b,c) relative to 

the language z ~; 
(4) (assuming D~*) for i <2~, t ~  - ~ ,  z~Z~t ,  there is ~(z)~pz  with 

(5) if ~ < ( < c o f 2  and t = a / E e E ~  -¢, let t ( ~ ) = a / E  ~ (recall that E ¢ 

refines E ¢); we require: 

z ~ .fp~,~)]c p~, t(~),t t 

where the subscripted * indicates the induced action on types. 

To begin the construction for a given (,  first let T ¢ be the deductive closure 

of T in the language z ¢. Let qt = (U¢<~ Pt(~)) U T ~. Applying 3.6 to t], we 
• a *  

obtain a (T, ~'- ¢)-tree of types t] ~ satisfying (0-3, 5). Assuming I"7 x , each q[ is 

of  cardinality at most 2 t . In order to treat (4) on the same footing as the other 

requirements we therefore need the following: 

4.4. LEMMA. Let p be a J - t r ee  o f  types, t E J ' ,  [ Pt [ < 2, z ~ Zt. Suppose p 

is a type with no A-support. Then there is a W-tree (I o f  types with p c_ (1, 

Iql  = I P l ,  and a formula ¢ ~  p with a¢(z )Eqt .  

PROOF. Combine Lemma 3.4 with the definition of k-support. Note 
however that the notion of k-support as defined here involves a well-ordered 
quantifier string, and we are allowing nonwellfounded trees. However, if we 
introduce a generalized notion of "linearly ordered" k-supports, then the sets 

of  finitary approximations to such generalized supports are equivalent to sets 
of  finitary approximations to well-ordered A-supports (using a well-ordering of 
the set of  finite increasing sequences of variables in the generalized support). 
As it is only these sets of  finite approximations which play a role in the 
argument, our claim follows. • 

4.5. The model 
Let ( p ¢: ( < cof2)  be the trees of types constructed in 4.3. For ( < cof2 

and a ~ L l e t  ~ ~ - ~ - ¢ = XaY a be a new string of variables corresponding to the 

variables gt ~ where t = a/E ¢. For ~ =< (, let lj¢" ~a ¢ ~ ~ correspond to t a/ee, a/E ¢ ~ , 

and more generally if ~ < (,  a E C~, let l~  be the composition of t~ ~ with the 

inclusion from ~ to ~ .  
F o r a E L ,  t = a / E  t , ( < c o l A ,  let q~be 
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Then qa ¢ is a specific alphabetical variant of  pt ~. Let q = lin 3 (q~" a EL, 
< cof2)  where the direct limit is taken over cof2 X L, with respect to the 

maps t,b, "qj ---'qg induced by (lal~ "~ <_~ ~, a EC~). For simplicity we will 

henceforth treat these maps notationally as inclusion maps. Then: 

(1) q is closed under conjunction. 

Let ~0 E q ~, ~ E q b ~ . Without loss of generality a ___< b. Choose p >_ ~, ~ so that 

aEC~. Then ~0, qJEq~ and hence ~0& ~ E q ~ .  

(2) q is consistent. 

As each q~ is consistent, this follows from (1). 

(3) q is complete. 

As each q~ is complete in the'. language r ~[Z~] (Z~ = {~b ~" b E {a } U C~ }), it 

suffices to note that for any formula ~0 of the language r in the variables 

~, - "~(g) if a = sup{a(/)} and ~0 - sup(~(i)), there is ~ > ~0 with ~0Er ~ so - -  ~ a ( i )  , . =  

that each a(i) is in {a} V Ca ¢, and then ~0 or n~0 will be in qa ~ . In particular: 

(4) The atomic part of  q defines a structure M. 

It remains to check that q describes a correct Henkin construction. 

4.6. LEMMA. q is the complete ~,q'(Q)-diagram of M. 

PROOF. We show by induction that for any ~0(~) with suitable free variables 

(treated as constants representing elements of M): 

( . )  ~0Eq iff M¢~0. 

As negation takes care of itself and the atomic and conjunctive cases were 
handled implicitly in (1-4) above, we confine our attention to the two 

quantifiers 3, Q, and the question of omitting types. According to 4.3(3,4) 3 

and the omitting types problem (assuming r-l~') have been dealt with properly. 

It remains to check that the part of 4.3(3) corresponding to 3.6(b,c) provides an 

adequate treatment of the quantifier Q. 
If Qu ~o(u, ~.)Eq, more spec, ificaUy Qu ¢(u, g)Eq~,  then for a < b E L  and 

large ( we will have ~O(Xb, ¢.) for some Xb EX~b. For b < c we will also have 
xb ~ xc E q (else we get Qx(x = &) in some qg). Thus Qu ~o(u, ~) will hold in M. 

Suppose now that Qu~(u,g)qiq, so nQu~o(u,g)Eq, specifically 
-~Qu ~o(u, 2.)Eq~. By 4.5(1) and the part of  4.3(3) corresponding to 3.6(c), if 
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~0(z, 2) holds in M t h e n  z has a name z'  in ya ~ for large (. Thus there are at most  

2 such elements in M,  as desired. • 

§5. Getting to square eight 

5.1. PROPOSITION. Suppose that (~0, RI) ~ (2, 2+). Then E] b• holds. 

PROOF. 

A. We first show that there is a model  M ( i n  a c.c.c, extension of  the universe 

o f  set theory) with universe to1 equipped with relations < ,  P ,  Q, R and 

functions F,  Gi (i = 1, 2), H ,  I, J satisfying: 

1. < is the usual well ordering, P is a predicate picking out to. 

2. Q is a predicate distinguishing an unbounded subset of  to, not containing 0. 

3. F is a partial 2-place function on M defined for (a, fl) with to < a < fl; we 
l - l  

write F~(a) instead of  F(~, fl) and we assume that F~: [to, fl) , to - Q. 

4. R is a binary relation; R(n, a) implies n < to < a < to1; we write R ,  for 

the set {n : R(n, a)); and we require that the sets R ,  are unbounded  in to 

and almost disjoint. 

5. J is a 2-place function from [to, too into to, and for each fl E [to, to1), the 

sets R ,  A (J (a ,  fl), to) (a varies over [to, fl)) are pairwise disjoint. 

6. F o r a < f l  < 7 i n  t o l - t o ,  and nEQ,  i fFy(f l)<n then: 

Fp(a) < n iff F~(a) < n. 

7. H is a partial 2-place function on M defined for (fl, n) with nEQ,  
f iG[to ,  toO; we write H, ( f l )  for H(fl, n), and we require that for n E Q ,  
fl ~ [to, toO, we have 

n > H , ( f l ) >  sup(m E Q :  m < n } .  

8. I is a partial 4-place function defined for (n, fl, 7, a) with n E Q, to _-< a < 

fl < to1, 7 ~ [to, too if H,(fl) =/- / , (7)  and either Fp(a) < n or ~ = ft. I f  

nEQ,  fl, TG[to,  tol), and H,(fl)=H,(7), then I(n,fl, 7 ; - )  is a 1-1 
order-preserving function from (oEE[to, fl)" F~(a)<n} U (fl} onto 

{aE[to,fl):F~(a)<n} U {7} which preserves the values of  F~,(a2), 
Hm(a2) for m < n, rnEQ. 

9. Gi (i = 1,2) are partial two-place functions from to to to; if  n ~ Q ,  
to <= a <fl < to1, Fp(a) < n, and m, < m2 are in Q, then we have: 

(a) Hm, ( a ) =  Gz(Hm~(a), m 1); 
(b) F~(a) = Gl(H,(fl), H,(a));  

(c) H,(fl) ~ H,(a). 
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PROOF OF THE CLAIM. We can choose < ,  P satisfying (1). By an approxi- 
mation to Q, F, H,  G/(i = 1,211, I we mean a 7-tuple p = (u, q, f ,  h, gt, g2, i) 
such that u is a finite subset of  a)t, u n co is an initial segment of  to, 

max(u N og)Eq,  and the analogues of  conditions (3, 6-9) hold on u. The 

components o fp  will be denoted u P, q P, etc. We write p -_<_ r if u p _ u r and the 

remaining components o fp  are restrictions of  their counterparts in r. Let ~ be 

the partially ordered set of  all approximations. Then ~ satisfies the countable 

chain condition, as one may check, and for each i < o)1 the set D, of  approxi- 

mations/9 for which i E u p is de, nse. 

A ~'-generic set encodes a model satisfying (1-3, 6-9); now define R so that 

(4) holds, and then define J so that (5) holds. As we are only interested in those 

aspects of the situation which can be encoded in L(Q), a similar model exists 

absolutely. For a more "direct" description of  the model (that is, without first 

forcing) compare [Sh3, Lemma 13]. 

B. Let ~ b e  a sentence in L(Q)  expressing the properties (1-9) of  M.  Take a 

model N ~ ~ with 11 N 1[ = 2 +, [pN I = 2. Let L = N - P~. We now claim: 

(i) L is 2 +-like (by (3) initial segments have cardinality at most 2); 

(ii) cof(P s, < r~)  = cof2.  

Suppose on the contrary that x = c o f P  ~ cof2.  We can write P as the 

increasing union of subsets Pc ( (  < cof 2), each of  cardinality less than 2. For 
aEL let Ra = (xEPN:R(x,a)). Fix a subset A a of Ra of  order type x, 
unbounded in P. For each a E L  fix ( (a)  with IA~ n e¢ta)[ = x. Fix ( < cof2  so 
that the set B = (a E L  : ( (a)  = (} is unbounded in L. For a E B  let Aa' be 

A a n e ( .  Choose b E L  so that the set B0 = {a E B  : a < b} has cardinality 2. 

For a EB0 let A '~ be (i EAa' : i > J(a, b)}. Then the sets A '~ (a EB0) form a 

collection of 2 disjoint nonemply subsets of Pc, a contradiction to "IP¢ I < 2". 

REMARK. If)~ is a singular strong limit cardinal there is a simpler argument 

based on condition (5). If  P =  U(<eof,~P( with IP¢I <2, and c o f ( P , < )  ~ 

cof2,  then for each a E L ,  there is (a < cof2  with R~ n P¢o unbounded in P, 

hence for some ( we have I {a : ~a --- (} I = 2 +, contradicting 2 le, i < 2 (this type 

of  argument was first used by Litman). 

C. (In the proof of Proposition 5.2 an additional step will be inserted at this 

point.) 

D. Fix an increasing cofinal sequence <n~: ( < co f2 )  in P. For ~ < cof2,  

b E L ,  let C~ be {a E L  : a < b and Fb(a) < n~}. This is an L-decomposition; 

coherence follows from condition (6). 
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To verify 06% it remains to introduce a suitable equivalence relation. For 

< cof2, and n = n c, let E ¢(a, b) hold for a, b E L  i f fH,(a)  = H,(b). To see 

that E ¢ refines EC for ~ < ~, use (9a). Furthermore each E c has at most 2 

classes since the range of Hn is bounded by n. We have more points to verify: 

(iii) If b @ Cc ~ then E ~(b, c). 

This follows from (9c) and (3). 

(iv) I f E  ~(Cl, c2) holds and bl Co, then for some b2 E Cc2, E C(bl, b2) holds. 

Notice that in this case bl = I(n~, c~, c2 bO is defined. By (8), Hn,(bz) = 
Hn,(b~). Also by (8), F~2(b2) = Fc,(bO < n¢, so b2E C ~. • 

(v) ~6~, W~ ifE~(a,  b). 

Again use I(n c, a, b,-). 

5.2. PROPOSITION. Suppose that (R0, R ~ ) ~  (2, 2 +) and 2 ~°f~ < 2. Then 

D ]" holds. 

PROOF. A, B. We proceed as in the proof of the previous proposition. Build 

a model M by forcing, as before, having one additional function Go subject to 

one further constraint in the context of condition (9) above: 

9d. H,(a) = Go(H,(fl), Fp(a)), 

and in addition: 

10. Form, n < w ,  in f {k@Q:k  >=m,n}>=Gg(m,n)fori=0,1,2.  

Then by absoluteness and the assumed two-cardinal transfer property, we 
get a model N of the L(Q)-content of  these properties, in the 2+-interpre - 
tation. In this model there is an initial segment P of cofinality cof2, and a 
terminal segment L equipped with a 2 +-like ordering < .  

Write P as the increasing union of bounded subsets Pc (~ < c o f 2 )  of 
cardinality less than 2. We may suppose that P0 = ~ ,  that each Pc has a 
maximum element n~, which belongs to Q, and (applying condition (10)) that 
each Pc is closed under the functions G, (i = 0, 1, 2). 

C. Assume now that 2 ¢°fa < 2. Then we claim that, without loss of genera- 

lity, H,,(a)EP¢ for ( < cof2,  a EL .  

For a E L and ( < col  2, choose G (~) < col  2 with H,,(a) E P ~ ) ;  we may 

take ~ to be increasing in ~. For ~: cof2 ---cof2, let B~ be {a E L  : ~ = ~}, 

and choose ~ so that Be is unbounded in L. Replace Q by the sequence (no), 

replace L by L, = {a EL:  for all ~ < col2,  H,~(a)EP~¢¢)}, and replace the 

sequence ( P c ' ~ < c o f 2 )  by (P'~'~EB~) where P'~={bEP~c):b<n~}.  
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L~ _ B¢ is unbounded in L. It :is necessary to check that L, is closed under the 

action o f / .  So let a, b, cEL,  with a < b, and ( < cof2 ,  with Hn:(b) = Hn:(c), 
and Fb(a) < n¢ (since the case a = b is trivial), and let a' = I(n~, b, c, a). Let 
( ' < c o f 2 ,  n = n , , .  We claim that H,(a')EPcw ). If ~ ' < ~  then, by (8), 
H,(a') = H,(a); so suppose that if' > (.  Since a EL, ,  by (9d) and the closure 
condition on Pew) it suffices to check that F~(a')E P~wl; as F~(a') = Fb (a) this 
will follow from (9b). 

D. For ~ < cofZ, b E L ,  let Cb ~ be {a E L  : a < b and Fb(a)EP¢). We claim 
that this is an L- decomposition; we must check the coherence. Accordingly fix 
a < b  < c  in L with bECCc and assume aECCb U C~; then by (6), Fb(a), 
F~(a) < n~, and by (9b) and the closure condition on Pc, Fb(a), F~(a)EP¢, as 

required. By (3), [Cb¢l < levi < 2 .  
The equivalence relations E ~ are defined as in the proof of  Proposition 5.1 

above. By our present constnlction, each E ~ has fewer than 2 equivalence 
classes. The rest of  the argument is as in the previous case. • 
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