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ABSTRACT

For A a strong limit singular cardinal, and more generally for 1 > 2% we
prove the equivalence of a number of model theoretic and combinatorial
conditions, including the Z(Q)-completeness theorem for the A*-inter-
pretation, an omitting types theorem for £(Q) in the A *-interpretation, and a
weak form of Jensen’s principle 0;.
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§1. Ildle chatter

1.1. History
For y, 4, u cardinals, we write

<}*9'1+> —1' (.ux.u+>

to mean: for every first order theory T of cardinality less than y with a
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distinguished monadic predicate P, if every finite subset of T has a model of
type (4, A1) (that is, a model M of cardinality A* in which P has cardinality
A), then T has a model of type (u, u*). We will be interested here mainly in the
case y = R, i.e., T'may be taken to be a single sentence; in this case we omit the
reference to y.

The subject began with the theorem of Vaught ({u,u™) Py (Ko, Ry ).
Subsequently Chang proved (¢ Xg, 8,) p {(u, u*y if g = u=*). Jensen proved
(R, Ry = (i, u™*) for u strong limit singular) from V' = L, more precisely O,;
the published proof is due to Silver. In the negative direction, Silver and Mitchell

proved Con((X,;, R;)#(R,, X,)), Schmerl showed (both using mild large cardi-
nals) Con(V n[(R,, 8, )7, ., R, )], and Litman and Shelah showed

COH(GCH + [<x03 Nl>7‘)<xw’ Nw+l>])

(starting with supercompact cardinals). One of our goals here is to give precise
set-theoretic equivalents to two-cardinal transfer principles, for strong limit
singular cardinals.

Another goal is to settle the relationship of two-cardinal transfer principles
to omitting types theorems for £(Q). Fuhrken showed the equivalence of the
principle (X,, X)) oy (i, p*) with a completeness theorem for £(Q) in the
1t -interpretation (Qx being read as “for at least u* x’s”): “If T C £(Q) is
consistent in the X -interpretation, and { 7| = u, then T has a model for the
1 ¥ -interpretation.” Shelah [Sh1] showed that (X, X,) oy (u,ut) implies
that £(Q) is u-compact in the x4 *-interpretation, via a characterization of the
transfer principle in terms of partition relations."

Keisler proved a strong omitting types theorem for #(Q). One useful feature
of his proof is that the final model is built as the union of a w;-chain of
countable structures, which allows certain decisions about omission or realiza-
tion of types to be made along the way; this flexibility is useful, e.g., Magidor
and Malitz used it in the compactness of £(Q"- - -), .. This strengthening
will be called the strong omitting types theorem. Keisler’s result extends both
Vaught’s theorem and the Henkin omitting types theorem, and it is natural to
look for common extensions to (u-compact) models for the u * -interpretation
for arbitrary cardinality u.

t By [Sh3] even (R, R;)—(u,ux*) implies this (as VIII of 2.2 can be axiomatized
by w EL(Q)).
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Shelah [Sh4] derived a strong omitting types theorem for £(Q) in the 1 -
interpretation (i.e., with a “linear” proof, as in Keisler’s case) from a diamond-
like principle (DI);; one has the implications ;= (Dl); =4 =A<*, and in
addition (by theorems of Gregory and Shelah, see [Sh4]) under GCH every
regular 4 > R, satisfies (DI), (and even <, for 4 a successor).

Grossberg [Gr] proved an omitting types theorem for £(Q) in the A*-
interpretation for A singular, assuming 0, and { x <4: (Dl), } is unbounded in
4, using the arguments of Jensen or Silver (in (R, X,) = (X,, X, ) and the
arguments of [Sh4].

The question as to whether one can have a version strong enough for the
construction of nearly rigid models, or transfer theorems for Magidor-Malitz
quantifiers, [as the regular case was used] remains open.

On the relationship between the various relatives of the squares for succes-
sor of singular cardinals, see Ben David and Shelah [BSh].

1.2. Notation

For a logic . and a vocabulary 7, &£[t] is the set of &-formulas in this
vocabulary. The logic £(Q) is the extension of first order logic by an additional
quantifier Q, and in the A-interpretation “Qx” signifies: “there are at least A x
such that”. For an £(Q)-theory T, consistency means finite consistency in the
N -interpretation, or equivalently: relative to Keisler’s axioms.

Infinitary formulas I of the following form are taken to represent certain sets
of £(Q)-formulas, called their “finitary approximations”:

I) (Qi¥)i<a I‘% 4

where for i <ea, Q,is 3 or Q, and y,is a sequence of variables, and forj <f y;
is an Z(Q)-formula. A finitary approximation y to such a formula I' is a
formula of the form:

(Y) (Qi(O)leO)Qi(l)ytTl)' o Qi(k)y'ifk)) & Wj
JEW

where ((0) <i(l)< ... <i(k)<a, y%,C yi 1s a finite string of variables
containing all free variables of any y; (j €w) lying in y,,,, and w C f is also
finite. Here the quantifier Qy is to be interpreted (for y finite) in the
A7 -interpretation as: “there are A+ pairwise disjoint sequences y, (o« < A *) such
that ...”. So (I') represents the set of all of these finitary approximations (),
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and if ' is already finitary then it is equivalent to its set of finitary approxima-
tions as defined here.

In connection with the omitting types property we will need the notion of A-
support from [Sh4], which is a natural extension of Keisler’s notion. If T'is an
2L(Q)-theory, p(X) a type, and I an infinitary formula of the form

oy (Qi)i<e 3% ,-‘S‘,, (X, y)

with all Q, of the form 3 or @, we call I" a A-support for p if 6 <4, T is
consistent with T and for all ¢ € p the following is inconsistent with T

(T() @i 35( & wx.) & 200).
i<
REMARK. We can use only Q;y; — see end of 3.1.

§2. A theorem or two

As far as the two-cardinal transfer principle (R,, 8,) = (4, A7) is concerned,
if we assume GCH then only singular cardinals are problematic. Our main
result clarifies this case:

2.1. THEOREM. For A a singular strong limit cardinal, and more generally
if A > 2" the following are equivalent:

(1) (R, Ry) = (4,47).

(2) The Completeness Theorem for L(Q) in the A™-interpretation.

(3) The omitting types theorem for £(Q) in the A*-interpretation.

(4) Various weak forms of 01,.

A considerable amount remains to be filled in to make this precise. We will
formulate eight properties of a cardinal 4, three model theoretic and the rest
set-theoretic. A more precise version of 2.1 states that for singular strong limit
cardinals they are all equivalent, and more generally that if A > 2°f* then six of
them are equivalent (we lose two versions of square to the vagaries of cardinal
arithmetic).

2.2. Eight properties of A
I. Two-cardinal transfer:

(Ro, Rp) = (4,47).
II. £(Q)-completeness:
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If T is a consistent £(Q)-theory of cardinality at most A, then 7 has a model
in the A*-interpretation.

III. Omitting types:

If T 1s a consistent £(Q)-theory of cardinality at most 4 and p; (i <4) are
types with no A-support, then 7 has a model in the A™*-interpretation
omitting each p;.

The types p; are assumed to involve finitely many free variables, or equiva-
lently just one free variable. For types in x variables our results will hold if
satisfies additionally: cof A >k, and |a*| <A for a <A.

The next four properties are weak variants of Jensen’s square (cf. 2.4). A
sequence (C,:a<A', aalimit) of sets C, C a <A *isaOsequenceon A * (or:
“for A7) if:

(1) C, 1is closed unbounded in « for « <A ™" a limit;

(2) |C,| <Aif cof(a) < A (always, if 4 is singular);

(3) if o, § <At are limits with $€C, (a limit of elements of C,) then

C=pnC,.
Jensen’s principle O, asserts that there is a O sequence on A ™.

Terminology

We will consider sequences (C,:a<<A*') with C,Ca for a<i®.
Such a sequence is coherent if Cy=pf N C, whenever €C,. A family
C=(Ci:a<i™, {<cofi) will be called a A *-decomposition if:

(1) for { < cof A the sequence {(C}:a<<A™) is coherent;

(2) fora<A™*, a=U,C! (an increasing union in {).

We associate with any A%*-decomposition C the structures @&
(e <A*, { <cof A) with underlying set {a} U C} and relations < and R*(for
& <), where R%(i, j) signifies: i EC7.

IV. O4:
There is a A *-decomposition C such that for any { < cof A: there are fewer
than A associated structures of the form €. (a <A ™), up to isomorphism. "

' Note that this implies |C}| <4, as (‘géz BEC!) are pairwise non-isomorphic having
different order type.
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V. 0é:
There is a A *-decomposition C such that for any { < cof A there are at most A
associated structures of the form €% (« <<i™), up to isomorphism.

We will need a weak form of the last two principles. Observe thatinIVand V
Alisinvolved as a cardinality, but A ™ enters primarily as an ordered set. If Lisa
At-like ordering (i.e. |L| = A", each proper initial segment is of smaller car-
dinality) then we may speak of L-decompositions (C:: { <cof A, a€ L) and
associated structures 6%, and then formulate the following variants of IV, V.,

V1. O¢:

There is a 4 *-like ordering L, an L-decomposition C, and a sequence of

refining equivalence relaticns E¢ ({ <cofA) on L, such that for any

{<cofianda,beEL:

(1) E*%(a, b) implies that there is an isomorphism /1 : €5 ~ (gf, such that for
a’€ €5, E*(a’, h(a’) holds.

(2) a € €, implies 7 E *(a, b).

(3) E‘ has fewer than A equivalence classes.

VIL. O

There is a 4 *-ordering L, an L-decomposition C, and a sequence of refining
equivalence relations E ¢ on L, such that for any { <cofA and a,b€EL
conditions (1-2) of [1¢" hold, and:

(3) E ‘ has at most A equivalence classes.

The last property that we consider is quoted from [Sh1] (for the general
form) and more specifically from [Sh3].

VIII. A non-partition property:

There is a A-coloring ¢ : (A *)?>— A such that for any finite w C A+ there are
finite sets w,, w;, w, such that for a;Ew,; (i =0, 1, 2) we have ay<a;<a,,
and there are color- and order-preserving functions f: w —— w, U w; U W,
and g: wy, U w, = w, U w, (e.g. c(a, B) = ¢(fl@), f(B)) on w?) so that:

fIw] meets both w; and w;;

c[w, X w,] is disjoint from c[(w, U w;)?] for i = 1, 2; and

¢ M{(w, X w,) is one-to-one.

2.3. MAIN THEOREM. IfAisasingular strong limit cardinal then these eight
properties are equivalent. If A => 2°°* properties I-1V, V1, VIII are equivalent.
More precisely, for any A:

(1) L II, VII, VIII are equivalent,
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(2) HI=1II, IV= VI, VI=VIL, V= VI, and IV=1V,
3) 1= VI jf2°f* < 3,

(4) VI=TII,

(5) VI=1V if A is a strong limit cardinal.

PrOOF. The proof is arranged as follows.

(1) That I, II are equivalent is due to Fuhrken.
That I, VIII are equivalent is found in [Sh3].
I= VIIL: §5.1.

VII=II: §4.

(2) These are all clear.

(3) §5.2.

4) §4.

(5) §2.5.

2.4. Other relationships
The following results are not needed for the proof of the main theorem, but
serve to clarify various relationships among combinatorial notions.

(1) If A<* =4 then O} holds, and if A is strongly inaccessible then O}
holds (2.7).

(2) O, implies O for A a singular strong limit (2.8).

(3) O¢ yields a A-Kurepa tree (2.6). (So if e.g. GCH holds and 4 is regular,
then the condition O¢ can fail.)

2.5. REMARK. Assume [4. Then for a<i*t, {<cofi, and B,y€E
{a} U C, distinct, C ﬂc is not isomorphic with C!, since if e.g. f <y then
ot(C ,?) < ot(C}). Hence if there are x isomorphism types of structures among
{Cl:a<<i™}, then ot(C.)<k™ for each such structure (even uniformly in
a). In other words, if C witnesses (1 then for each { < cof A we will have:

(%) sup{ot(C{):a<At} <A

if A is a limit cardinal. Conversely if 4 is a strong limit cardinal and C is a
A*-decomposition, then the latter condition suffices for O¢.

In particular, when 4 is a strong limit cardinal we can derive (04 from O0¢" by
restricting an L-decomposition C to a cofinal 1 *-sequence in L, since (*) also
follows from O0¢".

2.6. Fact. [Ofyields a A-Kurepa tree, that is a tree with cof (1) levels, each
of size less than A, and at least A branches.
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ProoF. Let (Cé:a<A™, [ <cofA) be a A*-decomposition afforded by
00¢. For any associated structure €% let M ¢ be the canonical collapse of C{ to a
structure whose underlying set is an ordinal. The M ¢ for a <A™ will be at level
{ in the tree; by O ¢, for each { << cof(4), there are fewer than A such collapsed
structures. Put M} above M ﬁ (for ¢ <) if ot(M ;) <ot(M/) and the
canonical injection is an isomorphism for the language of M ; . Each ordinal
a <At (ie., the identity) determines a branch (M¢:{ <cof A), and these
branches are distinct, since for § <« and { large we will have 8 € C{ and hence
{B}U G, C C,, forcing ot (M) > ot (M ).

2.6a. NoTe. Of would suffice.

2.7. PROPOSITION. IfA<* = then O} holds, while if A is strongly inacces-
sible then O also holds.

ProoF. We defer the case A = X, to stage A of the proof of 5.1 as some
details are different, and we actually require O in the proof of the main result.
So assume A is uncountable. It will suffice to construct a A *-decomposition

(C:l<d,a<it)

so that |C:| = |{|. We proceed by induction on «, and our inductive
hypothesis includes the condition: 8 = U, _;, C § for # < a, which we therefore
check as we proceed. There are four cases.

Ifa=0setCi=¢.

If «a=4J + k with § a limit ordinal and k >0 an integer, we set C{=
CiU(a—0).

If « =4 is a limit ordinal of cofinality x we set 6 = lim, ., d(i) (increasing)
and deal with two cases. Suppose first that x <A. Then for some & with
K =& < A we have:

S()ECS, foralli<j<k.

Let Ct =@ for { =&, and C{=U,, Cgy for { > &
Finally we suppose that k == 4 and we retain the notation of the previous
case. For &, { </ call { £-adequate if:

O()ECS, forj<i<.

Define f:1—1 by f({)=sup{¢:€=( and { is &-adequate}. Then f is
monotonically nondecreasing and { is f({)-adequate for all { <A. For any
I <Athereis { <A with { =i and { i-adequate, hence f{{) = i. Now define
Ci=U,4pC g(,»). The coherence and cardinality constraints are respected,
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and these sets increase as functions of {. As rg(f) is unbounded, a =U, C{
by induction. |

2.8. ProposITION. [, implies OO¢ for /. a singular strong limit.

ProoF. Let {C,:a<<A™, o a limit) be a O sequence for A*. Let 4 =
lim; o, A(7) With (A(1)); .1 @n increasing sequence of cardinals. We will
construct a A*-decomposition C satisfying:

(1) 1C = 4(0),

(2) foraalimit, FEC,,and { <cof AwithA({)= |C,],wehave B N C} =

Cé.
We proceed by induction on a.

Cé=g for { <cofA.

Ifa=d+kwithO<k <w,dalimit, let C{=CSU (a— d).
Suppose that « is a limit. Then C, exists. There are two cases. First, ifa€C”,
(equivalently, a = sup(C?)) let C} be:
%] ifA(0) <|Cl;

U{C;:BEC,, b<a} ifA(()Z|C,.

The coherence condition follows in the last case, since for S <y <a
with B,7€C, we have: EC; and |C,| =A({), so by (2) inductively
BNCE=Cj.

Finally, we may suppose that « is a limit and « > sup C’, = . So C, — B has
order type w, say C,—f = (y(0), y(1),...) in increasing order. Call { n-
adequate if y(i)E C, fori <j = n.Let C{ =U {C}, : {isi-adequate). Note
that for all { C; = Cfo C C5,s0if SEC, and A({) = | C, |, then as § < we
find: § N C{ =6 N C5 = C{ by induction. ]

2.9. NotE 1O 2.8. If W C V are models of set theory, 4 and A*" are
cardinals in W, and in W 0O} holds, then in ¥ [O¢ also holds, so normally it is
enough that A be a singular cardinal.

2.10. REMARK. We could replace condition II by the following without
modifying any of the arguments given:

II'. Any consistent £ (Q) sentence has a model in the A *-interpretation.

As in 5.1, 5.2 we actually use I’ and not I as an assumption. This then yields
another proof that II and Il are equivalent.



142 S. SHELAH Isr. J. Math.

§3. Arboriculture

3.1. Introduction

In the balance of this paper we will deal with the main issue: how to carry out
a Henkin construction for .£(Q) over a tree of approximations to a model of
size 17, given a suitable O-like principle as a point of departure. Here we focus
on the necessary syntactical preliminaries concerning trees of types. It will be
convenient to invoke Keisler’'s completeness theorem for £(Q) in the
X -interpretation. Thus it suffices to check the correctness of certain arguments
in this interpretation, rather than providing an explicit formal derivation of
the necessary principles in an axiomatic framework.

As a matter of notation we introduce additional quantifiers Q, x, -+ - X,
where Q,Xp means: there are at least A* disjoint sequences x, . . ., x, satisfy-
ing ¢. These quantifiers may be defined inductively in £(Q) as follows:

Qv Xy =:
(Ov0, xp) v (Q,x Iyl &1QX"9(x'y))).

Again, the basic properties of these quantifiers can be ascertained by inspecting
the X,-interpretation.

3.2. Trees of types
Let 7 be a tree, that is a partial order with unique minimum O, such that for
tET,{sE€T:s <t}islinearly ordered. A 7 -tree of types is an assignment Z,,
p, of variables Z, (possibly infinitely many) and partial types p, to the nodes ¢ of
J, so that:
(1) the sequences z, (t €.7) are pairwise disjoint, and each is partitioned
into two strings Z, = X,; V,,
(2) p, is a consistent type in the variables Z, =U {z,:5 =1},
(3) fors <t, p, = p, | Z,(more accurately: p, C p,and p; - p, I Z,),
(4) for s <t all finite approximations to (- - -QX, 3y, - - )scu=, A D, belong
to p;,
(5) Z=4.
In (4) the variables x,, y, occur in the order of increasing u, and QX, is to stand
for Q,X. in any finite approximation for which X; C x, has length n. The
variables x,, y, for u = s occur freely in (4). In terms of the idea as sketched
above, the variables x,, y, are witnesses for Q and 3 respectively.
If T is an £(Q)-theory then p will be called a (T, .7 )-tree of types if, in
addition, each p, is consistent with 7. We will say that p is deductively closed
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(that is, within its own vocabulary) if each p, is (relative to the full vocabulary
of p). Given two J -trees p, g we will say that p C gif p, C g forallt €7 . | p|
denotes the maximum of |7 |, sup{| p, |: t €7 }, and R, In our application we
ignore the case 4 = R, which in any case was handled by Keisler, since it
would require minor terminological modifications.

3.3. REMARK. If pisatree of types and 4 is its deductive closure (i.e. each
g, is the deductive closure of p,; namely, we put ¢ in g, if p, |- ¢ and the set of
free variables of pis C Z;; we shall usually ignore such points) then 4 is again a
tree of types.

3.4. EXTENSION LEMMA. Let p be a 7 -tree of types and let t €T . Suppose
p* D p, is a consistent type and p* contains all finite approximations to:

(*) ("'qu 3yu“')s<u§t/\p*

fors =t.
Then thereisa T -tree gof types withp C 4, p* C q,and |G| = | P| + | p*|.

Proor. We may take p and p* to be deductively closed. For '€ define
pr¥=p*tU{Z;:s=t,t'}, and let g, be the union of the sets of finite
approximations to:

(1) (++-0%, AV, Vscuzr ADX¥&A D,

fors=t,s€T*.

For t” =t in  certainly g,. C q,,. We claim also that ¢,.—q, [ Z,,. Fix
s =t” and consider a finite approximation @ to (1) with matrix ¢ = ¢, & ¢,,
where ¢, € A p¥and ¢, € A p,.. Let

s’ =:max(s, sup{s, = ¢ : ¢, has variables in Z_}).

Let ¢'=(---0% 3V, )y<u=rp. Then ¢'=¢ &¢p; with ¢;=
(++ QX 3Pu" " *)y<u=r . and (essentially) @ is (- - - OX, I, - - - )s<y=s 9"
If s’ = t then @5€ p,, C p*, so ¢ and hence ® are in p*. Thus PEp* 1 Z C
q,-. If s’£tthen s’ = s and @ = ¢, & ¢} with ¢, €Ep¥C q,., p5€ p, C G
This proves (3) of the definition of a tree of types. To verify (2), consistency,
in view of (3) it suffices to check the consistency of g, which is p*. Also (3)
allows us to reduce (4) to:

(4) Fort'eF,if g€ aq, then ¢, 0Ox, 3,0,

which holds in our case. [ |
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3.5. LemMA. Let T be an L(Q)-theory, p a partial £(Q)-type in the variables
X;, V; i €L, a linear order), and assume that all finite approximations to:

(%) [---OQX 3y« lieLAD

are consistent with T. Let q be the type consisting of the union of all the sets of
finite approximations to:

M, [-+-0x; 3P -lissAD

as s varies over L. Then:

1. p C q, qisconsistent with T, and any finite approximation to (1), ( putting
q for p) is a consequence of q.

2. For any formula ¢ there is a choice of w = ¢ or ¢ so that all finite
approximations 1o:

(*2) [---0% 3y liee AP U {y})
are consistent with T

3. Let 0EL be minimal, ¢(x, y) an L(Q)-formula, u, z variables with u
disjoint from x;, y, for i €L — {0}, and z disjoint from all X;, y;, and i, and set
yi=y fori>0,y,=p,UZ. Then:

(*3) [---0% 3y ler A(p U { 3X 0(x, 1)~ (2, u)})

is consistent with T.

4. If o(x,y), u, Z are as above, u disjoint to y, and X/ =X; for i >0,
X4=x U Z, then:

(*4) [---OX{ 3y - liee AP VU {QX o(X, u)—~0(Z, 0)})
is consistent with T.
Proor. This follows by inspecting the X,-interpretation. |

3.6. COROLLARY (t0 3.4, 3.5). Ifpis a T -tree of types then we can find a
T -tree g of types in the same language withp C g, |¢| = | P |, each q, complete
( for the variables in Z,) and such that:
(a) each q, has existential witnesses:
if o4, 2) is an L(Q)-formula with 2EZ,, then for some y€U, ., p,
(3ugu, 2)—9(y, 2)) belongs to q,;

(b) each g, has Q-witnesses:
if p(u,z) is an L(Q)-formula with 2 CZ,, s <s’' =t, then for some
x Cx,, [Queu, 2)— ¢(x, 2)] belongs to q,;
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(c) for any s <t with s >0, L(Q)-formula ¢(2,z), and Z€Z,, z C Z,, if
0(z,2) &0z @(2, z) is in p,, then for some z' €y, (z = z')E p,.

ProOF. An iterative procedure based on Lemma 3.5 yields everything but
condition (c).

To achieve (c) requires a further iteration based on Lemma 3.4. For this it is
necessary to verify that under the hypothesis of (c) the type consisting of all
finite approximations to expressions:

(*) ["'an 3)7,;-'-]S,qé,[/\p,&(z:z’)]

(s’ <t) is consistent, where z’ is a new variable adjoined to y, (taken as
bounded in (*) if s <5).

For o€ np, [+--0x, 39, -+ ly<u=<,0 1s Witnessed in a model M in the
X -interpretation by a certain tree of sequences in A/, which must be thinned
(if s” < s) so as to allow a corresponding choice of z’ = z along each branch.
As there are at most X, choices at the appropriate points, it is easy to thin
this tree suitably. [ |

3.7. RemMARk. If the tree 7 is well-founded then (c) allows us to obtain a
more extreme condition, assuming that for t €7 \ {0}, 0<h(t) =¢, h(t) an
immediate successor of 0:

(¢") fort€ET and y €y, there is z&€ (U, <, X,) U Z,, such that (y = z)E p,.

For this it suffices to check that if there are s <t, ¢ satisfying the hypothesis of
(c), then (z = x) may be added to p, with x a new variable adjoined to x,. As we
do not apply this stronger condition, we say no more about it.

§4. In memoriam Joyce Kilmer

4.1. Introduction

In what may be called the /inear approach to building models of an .£(Q)-
theory T'in the A *-interpretation, we let M'be U {M, : { < 1%} with M, a weak
model of cardinality 4, taking care that in M, , , some large sets get larger, and
small sets stay small and do not even get new members. If 4 cooperates, M will
be a real model.

Our approach here is somewhat different. Our A/, is an incomplete type, or
partial model, containing a large number of complete types which form a tree
F under inclusion, in such a way that incompatible extensions in 7 °* of a
particular type p are allowed no further common variables. In this framework



146 S. SHELAH Isr. J. Math.

the index { runs only over cof 4. The underlying set of the final model M will be
At. For a <A™ the restriction of M to « is itself the limit of approximations
M!. A node pin ¢ describes M} up to isomorphism, but a single node will
correspond to as many as At distinct values of « (hence the variables in p will
be systematically replaced by new variables for each suitable o). In a word, 7 ¢
carries a number of templates describing various moderately large pieces of M.

4.2. Notation

Our goal in the present section is to show that 04" yields the completeness
theorem for £(Q) in the A T -interpretation, and that ¢ yields the correspond-
ing omitting types theorem. To a large extent the two arguments may be given
simultaneously.

We fix a A*-like ordering L, and an L-decomposition C = (C}:a €L,
{ <cof A) as afforded by O ¢* cr 17", as the case may be. We have an associated
system E ¢ of equivalence relations on L satisfying certain conditions.

In either case we then define trees 7 ¢ for { < cof 4 as follows. The nodes of
F ‘aretheclassesa/E‘(a €L). Thus |7 ¢| =< A, and if we are dealing withOJ "
then |F ¢| <A. The ordering on 7 * is defined as follows: a/E ¢ < b/E ¢ if for
some a’Ea/E*, b’€b/E*, we have a’EC}, . Observe that by 02°(1) there is
theng*€C ,f with E ¢(a, a*). Hence this relation is asymmetric (remembering
(2) of O7") and transitive, and the predecessors of b/E ¢ are simply the classes
alE* for a€C}. Observe that if a <a’ and a, a’€C; then a/E* < a’/E‘ in
T ¢, s0 T ‘reallyis a tree.

4.3. Construction

We now carry out a Henkin-style proof of the completeness theorem for
#(Q) (assuming [1?*), or the omitting types theorem for £(Q) (assuming (0¢°),
in the A *-interpretation, using 7 ‘-trees of types for { <cof A.

Let T be a consistent 2£(Q)-theory in a language 7 of cardinality A, and
let p; (1<) be L(Q)types in the same language. Let 7=U,_;7°
(an increasing union) with |7¢] <A. (When working with 0" we can
allow 1¢ =1 for all £, instead.) We will construct (7, 7 ¢)-trees of types p*
in the languages 7¢ (extended by a suitable supply of free variables Z*),
together with embeddings 15 : zf — z} for £ < { whenever ¢ = t’/E*¢ (which
means that ¢’ has the form a/E ¢ for some a and ¢ = a/E ¢) so that fora €L, if
t({)=a/E* then the family (Z};); 1% forms a directed system. We
proceed inductively for { <cof A. Let A, = max(|7¢|,|.7 *|). The conditions
are as follows:

0) tfCtéCr, |15 =4
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M IpC) =4;

(2) each p} is complete for 7¢[Z];

(3) each p| has the properties described in Corollary 3.6(a,b,c) relative to
the language 7 °;

(4) (assuming Of) for i <A, tE€EF ¢, z€Z/, there is ¢p(z)Ep, with
9(2)Epf;

(5) if E<{<cofi and t =a/E*€T ", let t(&)=alE* (recall that E°¢
refines E ¢); we require:

& 14
Loy [ pt(é)] - pf,

where the subscripted * indicates the induced action on types.

To begin the construction for a given {, first let 7¢ be the deductive closure
of T in the language 7°¢. Let g, = (U, pyy) U T. Applying 3.6 to g, we
obtain a (T, 7 ‘)-tree of types ¢ * satisfying (0-3, 5). Assuming (1%, each g} is
of cardinality at most 4;. In order to treat (4) on the same footing as the other
requirements we therefore need the following:

4.4. LEMMA. Letpbea T -tree of types, tET, | p,| <A,z €Z,. Suppose p
is a type with no A-support. Then there is a T -tree § of types with p C g,
|g| = |p|, and a formula ¢ € p with "p(z)Eg,.

ProoOF. Combine Lemma 3.4 with the definition of A-support. Note
however that the notion of A-support as defined here involves a well-ordered
quantifier string, and we are allowing nonwellfounded trees. However, if we
introduce a generalized notion of “linearly ordered” A-supports, then the sets
of finitary approximations to such generalized supports are equivalent to sets
of finitary approximations to well-ordered A-supports (using a well-ordering of
the set of finite increasing sequences of variables in the generalized support).
As it is only these sets of finite approximations which play a role in the
argument, our claim follows. |

4.5. The model

Let ( p*:{ <cofA) be the trees of types constructed in 4.3. For { < cof 4
and a€L let 2} =x.y; be a new string of variables corresponding to the
variables z{ where t = a/E ‘. For{ < {,let1: 25—z} correspond to 1%, .,
and more generally if ¢ < {, a EC|, let 1% be the composition of 1 ¥ with the
inclusion from z{ to z;.

Fora€L,t=alE*, { <cofi,let g} be

(925 Wewucs: 9+ 28+ )= € pf).
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Then ¢} is a specific alphabetical variant of p/. Let ¢ =lim(gi:a€EL,
{ < cof A) where the direct limit is taken over cof A X L, with respect to the
maps 1 f,i 1qs —>q,f induced by (i fﬁ E=L,a€C ,f . For simplicity we will
henceforth treat these maps notationally as inclusion maps. Then:

(1) qis closed under conjunction.

LetpEgqs, t//Eq,f . Without loss of generality a = b. Choose p = {, & so that
a€C,.Then g, wEq, and hence p & W Eq,.

(2) q is consistent.
As each g¢ is consistent, this follows from (1).
(3) g is complete.

As each ¢{ is complete in the language T {[Z{](Z, = {z5: bE{a} U CL}), it
suffices to note that for any formula ¢ of the language 7 in the variables
z; =28, if a = sup{a(i)} and {, = sup({(i)), there is { = {, with pE1° s0
that each a(i) is in {a} U C¢, and then ¢ or 719 will be in ¢} . In particular:

(4) The atomic part of g defines a structure M.

It remains to check that ¢ describes a correct Henkin construction.
4.6. LEMMA. q is the complete L(Q)-diagram of M.

Proor. We show by induction that for any ¢(z) with suitable free variables
(treated as constants representing elements of M):

(*) pEq if MEg.

As negation takes care of itself and the atomic and conjunctive cases were
handled implicitly in (1-4) above, we confine our attention to the two
quantifiers 3, Q, and the question of omitting types. According to 4.3(3,4) 3
and the omitting types problern (assuming [J¢°) have been dealt with properly.
It remains to check that the part of 4.3(3) corresponding to 3.6(b,c) provides an
adequate treatment of the quantifier Q.

If Qu p(u, 2)Eq, more specifically Qu ¢(u, Z)E g}, then for a <b€EL and
large { we will have ¢(x,, Z) for some x, EX If . For b < ¢ we will also have
Xy # X. Egfelse we get Ox(x = x,)insome g ,f ). Thus Qu ¢p(u, Z) willhold in M.

Suppose now that Qu¢(u,Z)¢q, so 1Que(u,zZ)Eq, specifically
“Qu ¢(u, 2)Eq} . By 4.5(1) and the part of 4.3(3) corresponding to 3.6(c), if



Vol. 65, 1989 “GAP 1”7 TWO-CARDINAL PRINCIPLES 149

¢(z, z) holds in M then z has a name z’ in y} for large {. Thus there are at most
A such elements in M, as desired. [ |

§5. Getting to square eight

5.1. PROPOSITION.  Suppose that (R, Rj) —— (4, 4). Then a? holds.

PrOOF.

A. We first show that there is a model M (in a c.c.c. extension of the universe
of set theory) with universe , equipped with relations <, P, ¢, R and
functions F, G; (i =1, 2), H, I, J satisfying:

1. < is the usual well ordering, P is a predicate picking out w.

2. Qis a predicate distinguishing an unbounded subset of , not containing 0.

3. Fis a partial 2-place function on M defined for (o, 8) with w = a < f; we

write Fy(a) instead of F(a, f) and we assume that F;: [w, ) L w- Q.

4. R is a binary relation; R(n, «) implies n <@ = a < w,; we write R, for

the set {n: R(n, a)}; and we require that the sets R, are unbounded in w
and almost disjoint.

5. Jis a 2-place function from [w, @,) into w, and for each f €E[w, w,), the

sets R, N (J(a, B), ) (a varies over [w, B)) are pairwise disjoint.

6. Fora<f <yin w,—w, and n €Q, if F,(f)<n then:

Fy@y<n iff F(a)<n.

7. H is a partial 2-place function on M defined for (S, n) with n€Q,
B E[w, w); we write H,(f) for H(S, n), and we require that for n €Q,
BE[w, w,), we have

n>H,(B)>sup{(mEQ: m <n}.

8. Iis a partial 4-place function defined for (n, 8, y, ) withn€Q, w =a =
B <w, yElw, w) if H,(f)=H,(y) and either Fs(e) <n or a=f. If
neQ, B,yElw, w,), and H,(f)=H,(7), then I(n,B,y,—) is a 1-1
order-preserving function from {a€[w,p): Fyla)<n} U {f} onto
{a€[w, B): F(a)<n} U {y} which preserves the values of F,(a)),
H (o)) form =n, megQ.

9. G; (i =1, 2) are partial two-place functions from w to w; if n€Q,
0 =a<p <w, Fgla)<n,and m; <m,are in Q, then we have:

(@) Hy () = GH (), m,);
(b) Fgla) = G(H,(B), H,(a));
(c) H,(B) # H,(a).
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Proor oF THE CLAIM. We can choose <, P satisfying (1). By an approxi-
mationto Q, F, H,G;(i=1,2), Iwemean a 7-tuple p =(u, q, f, h, g, &, i)
such that u is a finite subset of w,, ¥ N w is an initial segment of w,
max{u N w}€Egq, and the analogues of conditions (3, 6-9) hold on u. The
components of p will be denoted u?, g2, etc. We write p < rif u? C u"and the
remaining components of p are restrictions of their counterpartsin r. Let 2 be
the partially ordered set of all approximations. Then 2 satisfies the countable
chain condition, as one may check, and for each i < w, the set D, of approxi-
mations p for which i €Eu? is dense.

A 2-generic set encodes a model satisfying (1-3, 6-9); now define R so that
(4) holds, and then define J so that (5) holds. As we are only interested in those
aspects of the situation which can be encoded in L{Q), a similar model exists
absolutely. For a more “direct” description of the model (that is, without first
forcing) compare [Sh3, Lemma 13].

B. Let ¥ be a sentence in L(Q) expressing the properties (1-9) of M. Take a
model NFy with | N || =A%, |PY| =A.Let L = N — P¥. We now claim:

(1) L is A*-like (by (3) initial segments have cardinality at most 4);

(ii) cof (PN, <t p)=rcof .

Suppose on the contrary that k = cof P # cof .. We can write P as the
increasing union of subsets P, ({ < cof 1), each of cardinality less than A. For
a€L let R,={xEP":R(x,a)}. Fix a subset 4, of R, of order type x,
unbounded in P. For each a €L fix {(a) with |4, N P,y | = k. Fix { <cof Aso
that the set B={a€L:{(a)=-{} is unbounded in L. For a€EB let A, be
A, N P,. Choose b EL so that the set By={a EB:a <b} has cardinality 4.
For a€ B, let A% be {i€A,:i>J(a,b)}. Then the sets A7, (a €EB,) form a
collection of A disjoint nonempty subsets of P, a contradiction to “| P, | <A”.

ReMaRrk. If Ais a singular strong limit cardinal there is a simpler argument
based on condition (5). If P = U, .1 P; with |P;| <A, and cof (P, <) #
cof 4, then for each a €L, there is {, <cof A with R, N P, unbounded in P,
hence for some { we have |{a: {, = {}| = A", contradicting 2 ¥/ < A (this type
of argument was first used by Litman).

C. (In the proof of Proposition 5.2 an additional step will be inserted at this
point.)

D. Fix an increasing cofinal sequence (#n;:{ <cofi) in P. For { <cof4,
beEL,let Ci{be {a€EL:a<band Fy(a) <n;}. This is an L-decomposition;
coherence follows from condition (6).
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To verify %", it remains to introduce a suitable equivalence relation. For
{ <cofA,and n = ng, let E(a, b) hold for a, b€ L iff H,(a) = H,(b). To see
that E ¢ refines E¢ for ¢ < ¢, use (9a). Furthermore each E¢ has at most A
classes since the range of H, is bounded by n. We have more points to verify:

(iii) If bEC¢ then E “(b, ¢).

This follows from (9c) and (3).

(iv) If E%(c,, ¢;) holds and b, € C. then for some b,E C,, E (b, by) holds.
Notice that in this case b, = I(n;, ¢, ¢, b)) is defined. By (8), H, (b,) =
H,(by). Also by (8), F.(b)) = F.(b) <n, so hECE,. ]

(V) €%, €, if E¥a,b).

Again use I(n;, a, b, -).

5.2. PROPOSITION.  Suppose that (R, X)) —— (4,47) and 2°* < A. Then
as holds.

PrOOF. A, B. We proceed as in the proof of the previous proposition. Build
a model M by forcing, as before, having one additional function Gj subject to
one further constraint in the context of condition (9) above:

9d Hn(a) = GO(Hn(ﬂ)s Fﬂ(a))s
and in addition:
10. Form,n <w, inf{k€Q:k=zm,n}zG(m,n)fori=0,1,2.

Then by absoluteness and the assumed two-cardinal transfer property, we
get a model N of the L(Q)-content of these properties, in the A*-interpre-
tation. In this model there is an initial segment P of cofinality cof 4, and a
terminal segment L equipped with a 4 *-like ordering <.

Write P as the increasing union of bounded subsets P, ({ <cofi) of
cardinality less than 4. We may suppose that P, = ¢, that each P, has a
maximum element n,, which belongs to ¢, and (applying condition (10)) that
each P, is closed under the functions G, (i =0, 1, 2).

C. Assume now that 24 < A. Then we claim that, without loss of genera-
lity, H, (a)E P for { <cofl,a€L.

For a€L and { <cof 4, choose £,({) <cof A with H, (a)€ P, ,; we may
take &, to be increasing in {. For ¢:cof A —cof A, let B;be {a€EL:{ =¢},
and choose £ so that B; is unbounded in L. Replace Q by the sequence (n;),
replace L by L; = {a€L: for all { <cofi, H,(a)E Py}, and replace the
sequence (P;:{ <cofd) by (P;:{EB;) where P; ={bEPyy:b=n}.
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L; 2 B;is unbounded in L. It is necessary to check that L, is closed under the
action of 1. Soleta, b,c€L; witha = b, and { <cof 4, with H, (b) = H, (¢),
and Fy(a) < n, (since the case a = b is trivial), and let a’ = I(n;, b, c, a). Let
{’<cofd, n=n;. We claim that H,(a’)EPy,y. If {’={ then, by (8),
H,(a’) = H,(a), so suppose that {’> {. Since a €L;, by (9d) and the closure
condition on Py, it suffices to check that F.(a")E Py(,; as F.(a’) = F,(a) this
will follow from (9b).

D. For { <cofA,bE€EL,let C§ be {a€L:a <band F,(a)EP,}. We claim
that this is an L-decomposition; we must check the coherence. Accordingly fix
a<b<cin L with 5EC’ and assume a €C; U C¥; then by (6), Fy(a),
F.(a) <n;, and by (9b) and the closure condition on P, F,(a), F.(a)EPF,, as
required. By (3), |Cs| = |P,| <A.

The equivalence relations E ¢ are defined as in the proof of Proposition 5.1
above. By our present construction, each E*¢ has fewer than A equivalence
classes. The rest of the argument is as in the previous case. [ |
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